
Current time: 22nd September, 2023, 22:19
Open Buddy List

Threaded Mode | Linear Mode

5th August, 2023, 22:24 (This post was last modified: 23rd August, 2023 20:18 by Valentin Albillo.) Post: #1

Search Member List Calendar Help

Welcome back, Valentin Albillo. You last visited: Today, 20:51 (User CP — Log Out)
View New Posts | View Today's Posts | Private Messages (Unread 0, Total 229)

HP Forums / HP Calculators (and very old HP Computers) / General Forum / [VA] SRC #015 - HP-15C & clones: Big
NxN Matrix Inverse & Determinant

[VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Valentin Albillo
Senior Member

Posts: 999
Joined: Feb 2015
Warning Level: 0%

[VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Hi all,

Welcome to this new SRC #15 I've just created to commemorate the recent general availability of the HP-15C Collector's
Edition, which boasts enormously increased processing speed (up to 180x) and memory (up to 3x more RAM,) relative to the
original.

However, there's a significant problem which needs addressing.

Note: This SRC#15 was actually intended to be a full article, namely HP Article VA058 - Boldly Going - HP-15C CE Big Matrix Woes, but I considered
important to adress the problem ASAP, so I've posted outright this abridged version of the PDF article. The full article features much more information such
as step-by-step comments and stack contents, algorithms used and addtional code (input/output, timings for large matrices and more.) Stay tuned !

The Problem

The problem is that although the memory is vastly increased in most 15C clones (physical or virtual), allowing the
dimensioning and use of matrices larger than 8x8, some very important advanced matrix operations (namely matrix inversion,
system solving and determinant) can't be confidently performed using such large matrices (unreliable results, blocked
calculator) because of firmware limitations having to do with the internal LU decomposition, which are too difficult or even
impossible to overcome via ad-hoc patches.

The Sleuthing

Fully aware of this, I investigated what could I do about it, and first of all I looked at my own NxN Matrix Inversion
program for the HP-41C which I wrote and published 40 years ago, in order to try and convert it to run on the CE, but I
sadly realized that the conversion wasn't viable because the 41C program is too long (170 steps, 40 registers) and needs 11
numbered data registers to work, for a grand total of 51 registers. This would severely limit the maximum size of the matrices
to process.

Secondly, the 41C program uses a lot of flags (e.g. 13+1 for 13x13 matrices), which the CE doesn't have, and additionally it
uses a lot of indirect register storage and recall using several index registers, while the CE only has one, register I, so this
would considerably complicate and slow the conversion, needing special care with the stack contents. This would further
increase program size and running time significantly, as the program uses nested loops and thus executes many hundreds or
even thousands of RPN instructions to perform the inversion. In short, inviable.

Now, I investigated whether it would be possible to write a program to create and use the LU decomposition as the firmware
does but without the dreaded 8x8 limitation, and though this would possibly do, it would nevertheless result in long,
complicated code which would further need additional registers to work, thus limiting seriously the size of the matrices it could
process. It would also need to execute hundreds or thousands of RPN instructions, not firmware microcode. Viable but difficult
and with suboptimal performance, so

What to do ? (cue dramatic pause ...)

My Solution

To adopt an entirely new strategy, that's what. Come to think of it, the real problem here is that the HP-15C's firmware can't
obtain the LU decomposition (an so invert/system-solve/compute the determinant) of a matrix larger than 8x8. Well, let's
avoid it altogether by using some strategy which allows us to use the built-in microcoded inversion instruction for speed, but
making sure it never has to invert a matrix larger than 8x8 ! Enter partitioned matrices.

A partitioned matrix is a matrix considered to be partitioned into a number of submatrices, which we'll call blocks. The blocks
can be of arbitrary sizes, for example, this 5x5 matrix M can be partitioned into four unequal blocks A (4x4), B (4x1), C (1x4)

https://www.hpmuseum.org/forum/newreply.php?tid=20271
https://www.hpmuseum.org/forum/showthread.php?mode=threaded&tid=20271&pid=177570#pid177570
https://www.hpmuseum.org/forum/showthread.php?mode=linear&tid=20271&pid=177570#pid177570
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/thread-20271-post-175560.html#pid175560
https://www.hpmuseum.org/
https://www.hpmuseum.org/forum/search.php
https://www.hpmuseum.org/forum/memberlist.php
https://www.hpmuseum.org/forum/calendar.php
https://www.hpmuseum.org/forum/misc.php?action=help
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/member.php?action=logout&logoutkey=ae6a25c5499c5ff7846b6ca9149ec78b
https://www.hpmuseum.org/forum/search.php?action=getnew
https://www.hpmuseum.org/forum/search.php?action=getdaily
https://www.hpmuseum.org/forum/private.php
https://www.hpmuseum.org/forum/index.php
https://www.hpmuseum.org/forum/forum-3.html
https://www.hpmuseum.org/forum/forum-4.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://albillo.hpcalc.org/programs/HP%20Program%20VA421%20-%20HP-41C%20NxN%20Matrix%20Inversion.pdf
https://albillo.hpcalc.org/programs/HP%20Program%20VA421%20-%20HP-41C%20NxN%20Matrix%20Inversion.pdf

and D (1x1), like this:

 │ 3 1 4 1 5 │ │ 3 1 4 1 │ │ 5 │
 │ 9 2 6 5 3 │ │ 9 2 6 5 │ │ 3 │
 M = │ 5 8 9 7 9 │ = | A B | , A = │ 5 8 9 7 │ , B = │ 9 │ , C = │ 6 2 6 4 │ , D = │ 3 │
 │ 3 2 3 8 4 │ | C D | │ 3 2 3 8 │ │ 4 │
 │ 6 2 6 4 3 │

and of course the idea is that there are efficient algorithms to deal with such partitioned matrices by interacting directly with
their blocks, in particular for inverting the matrix or computing its determinant, without ever needing to process any block
larger than the largest one, whose size we can choose.

Note that regardless of their sizes, every set of blocks represents the same original matrix and operations performed using
them will result in the same outcome, but some sizes are better one way or another. For instance, my implementation here of
the algorithm to invert a matrix (similarly for computing its determinant) requires that it must be partitioned into 4 blocks and
that block A must be a square matrix no larger than 8x8 (which forces block D to also be a square matrix,) because it
eventually needs to compute the inverse of A using the built-in [1/x] instruction.

Also very important, to achieve maximum speed it's essential that my routine spends most of its time executing microcode, so
that's why block A must be dimensioned to be as large as possible without exceeding the 8x8 limit and thus for original NxN
matrices larger than 8x8 we'll dimension A to be exactly 8x8, which forces the sizes of all remaining blocks: B will then be
8x(N-8), C will be (N-8)x8, D will be (N-8)x(N-8) and as long as N ≤ 16 no block will be larger than 8x8, as required.

And last but not least, all the code here will run on any HP-15C version, including the original, the Limited Edition (patched
for extra RAM or not), the Collector's Edition (in its default or extended RAM modes), the DM15's various versions and
firmwares, as well as assorted true emulators.

Note: For N < 9 no partioning into blocks is necessary. as the [1/x] instruction can be used to directly invert the matrix. However, this subroutine can be
used if desired, see 5x5 Toy Example below.

The implementation Part 1: Matrix Inversion

This 29-step, 33-byte subroutine will invert in place an NxN partitioned matrix for N ≤ 16 (subject to available memory). It
takes no inputs but the caller (the user or another program) must have previously dimensioned and populated the four blocks
with the elements of the original matrix.

Once it returns, the original values in the blocks will have been replaced with those of the computed inverse matrix, which the
user or the caller program may proceed to output or use as desired. In other words, this subroutine can be called from the
keyboard or another program (in which case it could be directly embedded into it if it's called just once) but it doesn't perform
any input or output operations, it just does the inversion in place, period.

Program listing

 LBL E 001- 42,21,15
 RESULT A 002- 42,26,11
 RCL MATRIX A 003- 45,16,11
 RCL MATRIX B 004- 45,16,12
 RCL MATRIX C 005- 45,16,13

 RCL MATRIX A 006- 45,16,11
 1/x 007- 15
 RESULT E 008- 42,26,15
 x 009- 20
 STO MATRIX C 010- 44,16,13

 RESULT D 011- 42,26,14
 RCL MATRIX B 012- 45,16,12
 MATRIX 6 013- 42,16, 6
 1/x 014- 15
 RESULT E 015- 42,26,15

 x 016- 20
 RESULT B 017- 42,26,12
 x 018- 20
 CHS 019- 16
 RESULT A 020- 42,26,11
 RCL MATRIX C 021- 45,16,13

 MATRIX 6 022- 42,16, 6
 RESULT E 023- 42,26,15
 RCL MATRIX D 024- 45,16,14
 RCL MATRIX C 025- 45,16,13
 x 026- 20

 CHS 027- 16
 STO MATRIX C 028- 44,16,13
 RTN 029- 43,32

Notes:

This subroutine doesn't use or alter any numbered storage registers, including the three permanent index registers R0,
R1 and RI.

It also doesn't use any flags, labels (other than LBL E), branching, loops (simple or nested), logic tests of any kind or
scalar operations, and it executes sequentially from the first step (001) to the last step (029), executing each step just
once, which means it executes 29 user-code instructions in all, not hundreds or thousands like other approaches, so it
runs very fast (e.g. 0.8" to invert a 9x9 matrix).

The inversion is performed in place: once the process ends the elements of the inverse replace those of the original
matrix. Reinverting the computed inverse would get back the original matrix.

If calling it manually from the keyboard, apart from having to dimension four matrices (the blocks) instead of just one
(the large original), which takes but a few extra keystrokes, all the remaining keystrokes to input the data, call the
subroutine and output the results are exactly the same in number, the user's not doing any additional work because of
the partitioning.

Requirements:

The maximum size NxN matrix you can invert depends on the memory available in your physical or virtual device as per
this table, which features the A, B, C, D partition into blocks that requires the least memory (other block sizes would
work equally well but would require more registers, as discussed below):

 M A B C D E Regs +Prog

 9x9 8x8 8x1 1x8 1x1 1x8 89 94 {max. size with CE/96}
 10x10 8x8 8x2 2x8 2x2 2x8 116 121
 11x11 8x8 8x3 3x8 3x3 3x8 145 150
 12x12 8x8 8x4 4x8 4x4 4x8 176 181 {ditto with CE/192}
 13x13 8x8 8x5 5x8 5x5 5x8 209 214 {ditto with DM15/M1B}
 14x14 8x8 8x6 6x8 6x6 6x8 244 249 {no current device}
 15x15 8x8 8x7 7x8 7x7 7x8 281 286 {ditto}
 16x16 8x8 8x8 8x8 8x8 8x8 320 325 {ditto}

so, e.g. if you want to invert a 9x9 matrix you need to have 94 registers available in the common pool, which includes all
81 elements (distributed among the four blocks) plus the 8 registers automatically allocated for auxiliary matrix E, plus
5 registers to hold the 33-byte subroutine itself, so 81+8+5 = 94 registers in all, as seen in the above table. The reason
why auxiliary matrix E needs to be so big is because the HP-15C can't multiply two 8x8 (say) matrices in place, a third
matrix (E) is needed to store the result.

The subroutine would work as-is, unchanged, for matrices up to and including 16x16, but as of August 2023 no physical
or virtual devices exist which provide more than 229 registers because the HP-15C has a RAM limit of 256 registers and
27 of those are used internally, which means that matrices 14x14 or larger can't be processed by any currently existing
device. However, it might be possible that some future patch or modification could override that restriction, in which
case this subroutine could process matrices up to 16x16 without any modifications.

Also, this subroutine can work with a partition into blocks of other sizes (say a 10x10 matrix partitioned in four blocks of
size 5x5) as long as they and the corresponding auxiliary matrix E fit in available memory. This can result in speeding up
the inversion process, as it's faster to invert two 5x5 blocks than an 8x8 block and a 2x2 block. However, using the
recommended partition A(8x8), B(8x2), C(2x8), D(2x2) requires auxiliary matrix E to hold 8x2 = 16 elements while
using the partition A(5x5), B(5x5), C(5x5), D(5x5) requires auxiliary matrix E to hold 5x5 = 25 elements, nine more.

Block A must be invertible, i.e. det(A) # 0. Also, det(D-CB) # 0. For most real-life uses this will be the case.

If these conditions aren't met (if in doubt you can check the inverse's correctness by reinverting it, which should get the
original matrix back, negligible rounding errors aside), you might try exchanging or moving rows and/or columns in
the original matrix, computing the inverse, and then exchanging or moving back the corresponding columns and/or
rows in the computed inverse matrix. You can also try transposing the matrix, computing the inverse, and then
transposing back the inverse.

Worked examples

The following examples will show you how to use the subroutine and further assume that we're using the newly released HP-
15C CE (Collector's Edition) in its default mode, i.e. with just 96 registers available to store matrix elements.

1.- Worked 5x5 Toy Example

Note: The usefulness of this toy example (you could do the inversion directly with 1/x) is twofold: first, to get to know how to use the routine and get
comfortable using it and second, to ascertain that you've loaded it correctly into program memory by running it and checking the results it produces, without
having to tediously and unnecessarily input and output a large number of values.

Invert the following 5x5 matrix M; the A, B, C, D blocks are:

 │ 3 1 4 1 | 5 │ │ 3 1 4 1 │ │ 5 │
 │ 9 2 6 5 | 3 │ │ 9 2 6 5 │ │ 3 │
 M = │ 5 8 9 7 | 9 │ , A = │ 5 8 9 7 │ , B = │ 9 │ , C = │ 6 2 6 4 │ , D = │ 3 │
 │ 3 2 3 8 | 4 │ │ 3 2 3 8 │ │ 4 │
 │ 6 2 6 4 | 3 │

- Initialize and dimension the blocks: A is 4x4, B is 4x1, C is 1x4 and D is 1x1:

 CF 8, FIX 4 {ensure disabled complex stack and set 4 decimal places}
 1, DIM (i), MATRIX 0 {now MEM: 01 91 05-2}
 4, ENTER, DIM A {now MEM: 01 75 05-2}
 1, DIM B {now MEM: 01 71 05-2}
 4, DIM C {now MEM: 01 67 05-2}
 1, ENTER, DIM D {now MEM: 01 66 05-2}

 USER, MATRIX 1 {set USER mode, reset row/col indexes to first element}

- Store the 16 elements of block A:

 3, STO A, 1, STO A, 4, STO A, 1, STO A,
 9, STO A, 2, STO A, 6, STO A, 5, STO A,
 5, STO A, 8, STO A, 9, STO A, 7, STO A,
 3, STO A, 2, STO A, 3, STO A, 8, STO A

- Store the 4 elements of block B:

 5, STO B, 3, STO B, 9, STO B, 4, STO B

- Store the 4 elements of block C:

 6, STO C, 2, STO C, 6, STO C, 4, STO C

- Store the single element of block D:

 3, STO D

- Compute the inverse matrix:

 E -> E 1 4 {nearly instantaneous}

- Recall the inverse matrix elements from blocks A, B, C, D:

 RCL A -> 0.0265, RCL A -> 0.3591, ..., RCL A -> 0.1638 {16 elements}
 RCL B -> -0.3685, RCL B -> -0.3254, ..., RCL B -> 0.1054 { 4 elements}
 RCL C -> 0.2747, RCL C -> 0.1004, ..., RCL C -> 0.0585 { 4 elements}
 RCL D -> -0.3227 { 1 element }

so we've got the following inverse matrix blocks A', B', C', D':

 │ 0.0265 0.3591 0.0127 -0.0546 │ │ -0.3685 │
 A' = │ -0.2101 0.2124 0.2118 -0.1291 │ , B' = │ -0.3254 │
 │ -0.0408 -0.4286 -0.0612 -0.0408 │ │ 0.7347 │
 │ -0.0794 -0.0772 -0.0381 0.1638 │ │ 0.1054 │

 C' = │ 0.2747 0.1004 0.0066 0.0585 │ , D' = │ -0.3227 │

and thus the 5x5 inverse matrix M' is:

 │ 0.0265 0.3591 0.0127 -0.0546 -0.3685 │
 │ -0.2101 0.2124 0.2118 -0.1291 -0.3254 │
 M' = │ -0.0408 -0.4286 -0.0612 -0.0408 0.7347 │
 │ -0.0794 -0.0772 -0.0381 0.1638 0.1054 │
 │ 0.2747 0.1004 0.0066 0.0585 -0.3227 │

2.- Worked 9x9 Full-fledged Example

Invert the following 9x9 matrix M:

 │ 5 3 4 7 8 0 1 2 | 6 │
 │ 6 7 2 0 5 3 4 8 | 1 │
 │ 1 0 8 4 2 5 6 7 | 3 │

 │ 8 5 0 6 1 4 2 3 | 7 │
 M = │ 4 2 6 5 3 7 0 1 | 8 │

 │ 7 1 3 2 4 8 5 6 | 0 │
 │ 0 6 1 3 7 2 8 4 | 5 │
 │ 2 8 7 1 0 6 3 5 | 4 │

 │ 3 4 5 8 6 1 7 0 | 2 │

- The A, B, C, D blocks are:

 │ 5 3 4 7 8 0 1 2 │ │ 6 │

 │ 6 7 2 0 5 3 4 8 │ │ 1 │
 │ 1 0 8 4 2 5 6 7 │ │ 3 │
 A = │ 8 5 0 6 1 4 2 3 │ , B = │ 7 │ , C = │ 3 4 5 8 6 1 7 0 │ , D = │ 2 │
 │ 4 2 6 5 3 7 0 1 │ │ 8 │
 │ 7 1 3 2 4 8 5 6 │ │ 0 │
 │ 0 6 1 3 7 2 8 4 │ │ 5 │

 │ 2 8 7 1 0 6 3 5 │ │ 4 │

- Initialize and dimension the blocks: A is 8x8, B is 8x1, C is 1x8, D is 1x1:

 CF 8, FIX 4 {ensure disabled complex stack and set 4 decimal places}

 1, DIM (i), MATRIX 0 {now MEM: 01 91 05-2}
 8, ENTER, DIM A {now MEM: 01 27 05-2}
 1, DIM B {now MEM: 01 19 05-2}
 8, DIM C {now MEM: 01 11 05-2}
 1, ENTER, DIM D {now MEM: 01 10 05-2}

 USER, MATRIX 1 {set USER mode, reset row/col indexes to first element}

- Store the 64 elements of block A:

 5, STO A, 3, STO A, 4, STO A, 7, STO A, 8, STO A, 0, STO A, 1, STO A, 2, STO A,

 6, STO A, 7, STO A, 2, STO A, 0, STO A, 5, STO A, 3, STO A, 4, STO A, 8, STO A,
 1, STO A, 0, STO A, 8, STO A, 4, STO A, 2, STO A, 5, STO A, 6, STO A, 7, STO A,
 8, STO A, 5, STO A, 0, STO A, 6, STO A, 1, STO A, 4, STO A, 2, STO A, 3, STO A,
 4, STO A, 2, STO A, 6, STO A, 5, STO A, 3, STO A, 7, STO A, 0, STO A, 1, STO A,
 7, STO A, 1, STO A, 3, STO A, 2, STO A, 4, STO A, 8, STO A, 5, STO A, 6, STO A,

 0, STO A, 6, STO A, 1, STO A, 3, STO A, 7, STO A, 2, STO A, 8, STO A, 4, STO A,
 2, STO A, 8, STO A, 7, STO A, 1, STO A, 0, STO A, 6, STO A, 3, STO A, 5, STO A

- Store the 8 elements of block B:

 6, STO B, 1, STO B, 3, STO B, 7, STO B, 8, STO B, 0, STO B, 5, STO B, 4, STO B

- Store the 8 elements of block C:

 3, STO C, 4, STO C, 5, STO C, 8, STO C, 6, STO C, 1, STO C, 7, STO C, 0, STO C

- Store the single element of block D:

 2, STO D

- Compute the inverse matrix:

 E -> E 1 8] {~ 0.8 sec.}

- Recall the inverse matrix elements from blocks A, B, C, D:

 RCL A -> -0.8879, RCL A -> 1.1441, ..., RCL A -> 0.5356 {64 elements}
 RCL B -> 0.4953, RCL B -> -0.1670, ..., RCL B -> -0.3966 { 8 elements}
 RCL C -> -0.6907, RCL C -> 0.8420, ..., RCL C -> -0.6703 { 8 elements}
 RCL D -> 0.2930 { 1 element }

so we've got the following inverse matrix blocks A', B', C', D':

 │ -0.8879 1.1441 0.1934 -0.0150 0.9321 -0.7169 -0.2699 -0.8474 │ │ 0.4953 │
 │ 0.3822 -0.4559 -0.1674 0.0274 -0.4299 0.2991 0.0893 0.4501 │ │ -0.1670 │
 │ -0.5514 0.7337 0.1725 -0.1023 0.6292 -0.5107 -0.2008 -0.4859 │ │ 0.3434 │
 A' = │ 1.2107 -1.5120 -0.2495 0.1405 -1.2987 0.9816 0.2347 1.0938 │ , B' = │ -0.5735 │
 │ 0.2241 -0.1713 -0.0954 -0.0868 -0.1196 0.1774 0.0830 0.1148 │ │ -0.0983 │
 │ 0.6076 -0.8621 -0.2155 0.0166 -0.6233 0.6452 0.1842 0.6312 │ │ -0.3560 │
 │ -0.9092 1.0035 0.2297 -0.0243 0.8488 -0.6830 -0.1314 -0.7941 │ │ 0.4877 │
 │ 0.6424 -0.6943 -0.0413 0.0732 -0.6939 0.4720 0.1307 0.5356 │ │ -0.3966 │

 C' = │ -0.6907 0.8420 0.2012 -0.0015 0.7832 -0.6369 -0.0921 -0.6703 │ , D' = │ 0.2930 │

and thus the 9x9 inverse matrix M' is:

 │ -0.8879 1.1441 0.1934 -0.0150 0.9321 -0.7169 -0.2699 -0.8474 0.4953 │
 │ 0.3822 -0.4559 -0.1674 0.0274 -0.4299 0.2991 0.0893 0.4501 -0.1670 │
 │ -0.5514 0.7337 0.1725 -0.1023 0.6292 -0.5107 -0.2008 -0.4859 0.3434 │
 │ 1.2107 -1.5120 -0.2495 0.1405 -1.2987 0.9816 0.2347 1.0938 -0.5735 │
 M' = │ 0.2241 -0.1713 -0.0954 -0.0868 -0.1196 0.1774 0.0830 0.1148 -0.0983 │
 │ 0.6076 -0.8621 -0.2155 0.0166 -0.6233 0.6452 0.1842 0.6312 -0.3560 │
 │ -0.9092 1.0035 0.2297 -0.0243 0.8488 -0.6830 -0.1314 -0.7941 0.4877 │
 │ 0.6424 -0.6943 -0.0413 0.0732 -0.6939 0.4720 0.1307 0.5356 -0.3966 │
 │ -0.6907 0.8420 0.2012 -0.0015 0.7832 -0.6369 -0.0921 -0.6703 0.2930 │

Notes:

If in doubt, a simple way to check the inverse's correction is just to reinvert it once you've computed it and written down
its elements, which should still be undisturbed in memory. Simply run the subroutine again, like this:

 E (in User mode) or GSB E (out of User mode) -> E 1 8

and you'll get the original matrix back (ignoring negligible rounding errors), which you can verify by using RCL in User
mode, as we did in the Examples above.

Once you're done with using the subroutine you might want to free memory by resizing all blocks A, B, C, D and the
auxiliary matrix E to 0x0 as well as resetting the row/col indexes and reallocating numbered storage registers R0-R.9,
like this:

 MATRIX 0, MATRIX 1, 19, DIM (i)

The implementation Part 2: Determinant

This 15-step, 18-byte subroutine (half the size of the Matrix Inversion one and three times as fast) will compute and display
the determinant of an NxN partitioned matrix for N ≤ 16 (subject to available memory). It takes no inputs but the caller (the
user or another program) must have previously dimensioned and populated the four blocks with the elements of the original
matrix.

Once it returns, the computed determinant is left in the X stack register. In other words, this subroutine can be called from the
keyboard or another program (in which case it could be directly embedded into it if it's called just once) but it doesn't perform
any input operations, it just computes and leaves the determinant in the X stack register (i.e. the display.)

Program listing

 LBL D 001- 42,21,14
 RESULT D 002- 42,26,14
 RCL MATRIX D 003- 45,16,14
 MATRIX 9 004- 42,16, 9

 RCL MATRIX B 005- 45,16,12
 LASTX 006- 43 36
 1/x 007- 15
 RESULT E 008- 42,26,15
 RCL MATRIX C 009- 45,16,13

 x 010- 20
 RESULT A 011- 42,26,11
 MATRIX 6 012- 42,16, 6
 MATRIX 9 013- 42,16, 9
 x 014- 20

 RTN 015- 43 32

Notes:

All the Notes for the Matrix Inversion subroutine exactly apply, with the following changes:

It sequentially executes 15 user-code instructions in all, not hundreds or thousands like other approaches, so it runs
very fast (e.g. ~ 0.2" to compute the determinant of a 9x9 matrix).

After execution is complete, the original matrix is left irretrievably altered.

Requirements:

All the Requirements for the Matrix Inversion subroutine apply exactly, with the following changes:

Block D is the one which must be invertible, i.e. det(D) # 0. For most real-life uses this will be the case.

If this condition isn't met follow the guidelines given for Matrix Inversion above.

Worked examples

The following examples will show you how to use the subroutine and further assume that we're using the newly released HP-
15C CE (Collector's Edition) in its default mode, i.e. with just 96 registers available to store matrix elements.

1.- Worked 5x5 Toy Example

The 5x5 matrix used in this example is the same as the one used in the corresponding example for Matrix Inversion above,
the only difference being that now you're asked to compute its determinant instead of its inverse, so just exactly follow the
initialization and input instructions indicated there until you are about to perform the computation part, where you should now
do the following:

- Compute the determinant:

 D -> -1,813.0000 {nearly instantaneous}

As no inverse matrix es computed, its output instructions don't apply here.

2.- Worked 9x9 Full-fledged Example

The 9x9 matrix used in this example is the same as the one used in the corresponding example for Matrix Inversion above,
the only difference being that now you're asked to compute its determinant instead of its inverse, so just exactly follow the
initialization and input instructions indicated there until you are about to perform the computation part, where you should now
do the following:

- Compute the determinant:

 D -> -10,278,575.95 {~ 0.2 sec.; exact is -10,278,576}

As no inverse matrix es computed, its output instructions don't apply here.

Notes:

You might consider applying the same finalization instructions as described in the final Notes for Matrix Inversion above.

The implementation Part 3: All together now

There are two million-dollar questions:

1.- Can both subroutines fit at the same time in the default CE/96 mode ?

Yes, both are completely standalone (neither one requires the other or its results) but the Inversion routine is 33 bytes long
while the Determinant routine is 18 bytes long, so they would seem to occupy 51 bytes together.

However, if you change the final RTN instruction at step 029 in the former by an R/S instruction and delete the initial LBL D at
step 001 and the RTN at step 015 in the latter, you can concatenate both and the combination will fit in 49 bytes, which is 7
registers, which is exactly all the memory that is available for the code if you want to process a 9x9 matrix in the standard
CE/96 mode.

But if using the extended CE/192 mode, the question is moot as both routines can be present at the same time, unmodified,
and there's plenty of room for larger matrices or additional programs.

2.- Is it possible to compute both Inverse and Determinant without having to reintroduce the original data ?

Yes, it is quite possible by using either one of two simple tricks.

Assuming both routines are present in program memory, say you want to compute the inverse and the determinant of a large
matrix without having to reintroduce the matrix elements. Do as follows:

- Dimension the blocks and store the elements of the original matrix in their respective blocks

- Execute subroutine E to compute the inverse matrix.

- Recall and write down the elements of the inverse matrix

6th August, 2023, 00:59 Post: #2

6th August, 2023, 01:15 (This post was last modified: 6th August, 2023 01:20 by Namir.) Post: #3

(6th August, 2023 00:59)

6th August, 2023, 12:44 (This post was last modified: 6th August, 2023 12:45 by EdS2.) Post: #4

6th August, 2023, 16:17 (This post was last modified: 6th August, 2023 19:04 by J-F Garnier.) Post: #5

- Now you have two options to avoid reintroducing the original matrix again, namely either

a) Reinvert the matrix to get back the original matrix by executing subroutine E once again, then execute
subroutine D to compute its determinant. or

b) Execute subroutine D to compute the inverse's determinant, then (out of User mode) press 1/x and you'll get
the determinant of the original matrix, as DET(A) = 1 / DET(Inverse of A).

That's all, hope you enjoyed it and find it useful for your own purposes. Constructive comments welcome.

V.
Edit: corrected an omission; the reported values of the sample 9x9 determinant were missing the minus sign, as both are negative. The routine itself is Ok. Thanks,
Bert !

ctrclckws
Member

Posts: 86
Joined: Sep 2018

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Not constructive, I know, but WOW!.
To follow along, I would need a refresher on linear algebra, and the definitions of terms associated with it.

Namir
Senior Member

Posts: 905
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

ctrclckws Wrote:

Not constructive, I know, but WOW!.
To follow along, I would need a refresher on linear algebra, and the definitions of terms associated with it.

Valentine is a math brain! He has done many exceptionally smart works. I had asked for help in programming the Vieta's
formula relating polynomial coefficients and their roots. These formulas can get very very complicated. Valentine sent me an
unbleivebly compact BASIC code for the HP-71B. It was brilliant! The closest code I found on the internet was written in C++
and had a small error (which I was able to find and correct thanks to Valentine's BASIC code)! Valentine BASIC code blew me
away!!!

Namir (a.k.a. "The Math Heretic")

EdS2
Senior Member

Posts: 538
Joined: Apr 2014

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

.
An excellent offering, or pair of offerings - thanks Valentin!

As ever, the explanatory material is much appreciated.

J-F Garnier
Senior Member

Posts: 845
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Brillant, Valentin, really !

I was expecting something long and complicated, and your solutions are so compact.

As you wrote:

Quote:

This subroutine doesn't use or alter any numbered storage registers, including the three permanent index registers R0,
R1 and RI.

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=175560
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175560
javascript:Thread.reportPost(175560);
https://www.hpmuseum.org/forum/thread-20271-post-175573.html#pid175573
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=9386
https://www.hpmuseum.org/forum/private.php?action=send&uid=9386
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=9386
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175573
javascript:Thread.reportPost(175573);
https://www.hpmuseum.org/forum/user-88.html
https://www.hpmuseum.org/forum/thread-20271-post-175574.html#pid175574
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=88
https://www.hpmuseum.org/forum/private.php?action=send&uid=88
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=88
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175574
javascript:Thread.reportPost(175574);
https://www.hpmuseum.org/forum/user-912.html
https://www.hpmuseum.org/forum/thread-20271-post-175597.html#pid175597
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=912
https://www.hpmuseum.org/forum/private.php?action=send&uid=912
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=912
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175597
javascript:Thread.reportPost(175597);
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/thread-20271-post-175607.html#pid175607
https://www.hpmuseum.org/forum/user-9386.html
https://www.hpmuseum.org/forum/online.php
https://www.hpmuseum.org/forum/user-88.html
https://www.hpmuseum.org/forum/user-88.html
https://www.hpmuseum.org/forum/post-175573.html#pid175573
https://www.hpmuseum.org/forum/user-912.html
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/user-13.html

6th August, 2023, 18:27 Post: #6

12th August, 2023, 14:45 Post: #7

It also doesn't use any flags, labels (other than LBL E), branching, loops (simple or nested), logic tests of any kind or
scalar operations, and it executes sequentially from the first step (001) to the last step (029), executing each step just
once, which means it executes 29 user-code instructions in all, not hundreds or thousands like other approaches, so it
runs very fast (e.g. 0.8" to invert a 9x9 matrix).

Really impressive.
We will need some time to understand the logic behind the code, or better wait for your full VA058 article.

J-F

Fernando del Rey
Junior Member

Posts: 24
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Absolutely brilliant, Valentín!

As said by J-F, we will need some time to understand the matrix partition methods you have used to implement such elegant
solutions to both the matrix inversion and determinant problems.

The fact that it can be done with short and linear pieces of code in both cases, with no loops or branching, use of no memory
registers or flags, … is indeed hard to believe!

This is also a great example of what can be done with the power of the matrix operations set offered by the 15c. It is worth
trying to read and understand your code after having reread the relevant chapter about matrices in the 15c Owner’s Handbook
(Section 12).

Thanks for your effort to produce this jewel, Valentín, much appreciated!

Werner
Senior Member

Posts: 798
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

I saw this and promptly ordered a 15CE, which I wasn't planning to do ;-)
(I'd request a commission, Valentin)
It arrived 4 days ago, and I have been able to try out Valentin's routine, and get acquainted with the 15C's matrix functions
and programming.
I have been able to shave of two lines and 4 bytes of his code, just realizing that the intermediate matrix E could be used
throughout, no need for the STO MATRIX instructions:

27 lines, 29 bytes:

001 LBL E
002 RCL MATRIX A
003 RCL MATRIX B
004 RCL MATRIX C
005 RCL MATRIX A
006 RESULT A
007 1/x
008 RESULT E
009 x
010 RCL MATRIX B
011 RESULT D
012 MATRIX 6
013 1/x
014 RESULT C
015 x
016 RESULT B
017 x
018 CHS
019 RCL MATRIX E
020 RESULT A
021 MATRIX 6
022 RCL MATRIX D
023 RCL MATRIX E
024 RESULT C

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=13
https://www.hpmuseum.org/forum/private.php?action=send&uid=13
http://www.jeffcalc.hp41.eu/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=13
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175607
javascript:Thread.reportPost(175607);
https://www.hpmuseum.org/forum/thread-20271-post-175610.html#pid175610
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=314
https://www.hpmuseum.org/forum/private.php?action=send&uid=314
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=314
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175610
javascript:Thread.reportPost(175610);
https://www.hpmuseum.org/forum/thread-20271-post-175914.html#pid175914
https://www.hpmuseum.org/forum/user-314.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

13th August, 2023, 03:21 (This post was last modified: 13th August, 2023 03:23 by Valentin Albillo.) Post: #8

(12th August, 2023 14:45)

21st August, 2023, 14:48 Post: #9

24th August, 2023, 17:02 Post: #10

025 x
026 CHS
027 RTN

Cheers, Werner

Valentin Albillo
Senior Member

Posts: 999
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

.
Hi, Werner,

Werner Wrote:

I saw this and promptly ordered a 15CE, which I wasn't planning to do ;-) (I'd request a commission, Valentin)

Congratulations on a good decision. Knowing you, I'm sure your new HP-15C CE is going to inspire you to create amazing
code wholesale.

As for the commission, I'm glad to help José G. Divasson sell as many CEs as he can, he's done an amazing, exhausting work
to bring this most awesome calc to all HP fans and he deserves all the credit, I'd never take any money from him. Kudos to his
charming wife too, who no doubt helped him throughout this venture. And yes, I know you were joking.

Quote:

I have been able to shave of two lines and 4 bytes of his code, just realizing that the intermediate matrix E could be used
throughout, no need for the STO MATRIX instructions: 27 lines, 29 bytes:

Indeed, very well done. And it's a tribute to the 15C's outstanding matrix instruction set that this procedure can be
implemented at all in so few steps, and to the CE's memory and speed that this code can invert a 9x9 matrix in 0.8" flat when
run.

Thanks for your interest and excellent work and have a nice weekend.
V.

Bert
Junior Member

Posts: 1
Joined: Aug 2023

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Hi Valentin,

Thanks for this patch and great explanation.

You computed the determinant for the second example as follows.

Quote:

- Compute the determinant:

D -> 10,278,575.95 {~ 0.2 sec.; exact is 10,278,576}

For completeness, you may wish to correct the typo and make the determinant negative.

Fernando del Rey
Junior Member

Posts: 24
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

I guess the solutions provided by Valentín for the Large Matrix Inversion and Determinant calculations did not leave much
room for improvement, except for the small code optimization provided by Werner.

Perhaps it would be most useful to complete the trilogy with a similar code to solve Large Systems of NxN linear equations,

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175914
javascript:Thread.reportPost(175914);
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/thread-20271-post-175927.html#pid175927
https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=175927
https://www.hpmuseum.org/forum/editpost.php?pid=175927
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=175927
javascript:Thread.reportPost(175927);
https://www.hpmuseum.org/forum/thread-20271-post-176241.html#pid176241
https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=16089
https://www.hpmuseum.org/forum/private.php?action=send&uid=16089
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=16089
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176241
javascript:Thread.reportPost(176241);
https://www.hpmuseum.org/forum/thread-20271-post-176408.html#pid176408
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/post-175914.html#pid175914
https://www.hpmuseum.org/forum/user-16089.html
https://www.hpmuseum.org/forum/user-314.html

25th August, 2023, 16:43 (This post was last modified: 25th August, 2023 18:49 by Werner.) Post: #11

(24th August, 2023 17:02)

assuming it can be done.

Would you oblige, Valentín, or anyone else?

Werner
Senior Member

Posts: 798
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

[Update: shaved off two more bytes ...]

Fernando del Rey Wrote:

Perhaps it would be most useful to complete the trilogy with a similar code to solve Large Systems of NxN linear equations,
assuming it can be done.

Would you oblige, Valentín, or anyone else?

Nothing motivates me more than a challenge!
I originally thought it could not be done, because you would need 6 matrices to pull off the same 'partitioning' trick, so I wrote
the 'regular' solve.

It could not be done, until I did it ;-)
So here it is, a routine to allow you to solve up to a 13x13 (!) system on the 15C-2 CE.
It uses partitioning of the matrix, much like Valentin's routines.

To solve a system of linear equations, of order n>8

 M*X=G

partition M as before, with block A 8x8:

 A B X E
 * =
 C D Y F

All we need to do is solve this 2x2 system, overwriting E and F with X and Y.
The problem, of course, is that we don't have the sixth matrix F, so to be able to supply all necessary data,
you have to combine B and E, and D and F:

 A BE

 C DF

The routine below will solve this system and put the results in A and C. It uses 1 subroutine level,
and the registers I,0 and 1. The original matrices are all lost, so you can't solve subsequent systems,
but you may of course provide right-hand sides with more than one column.

44 lines, 51 bytes
Enter line 34 in USER mode

001-42,21,12 LBL B
002-45,16,13 RCL MATRIX C

003-45,16,12 RCL MATRIX B
004-45,16,11 RCL MATRIX A
005-42,26,12 RESULT B
006- 10 /
007-42,26,14 RESULT D

008-42,16, 6 MATRIX 6
009- 32 1 GSB 1
010-45,16,11 RCL MATRIX A
011-45,16,14 RCL MATRIX D
012-42,26,13 RESULT C
013- 10 /

014-45,16,12 RCL MATRIX B
015- 32 1 GSB 1
016-45,16,13 RCL MATRIX C
017-42,26,11 RESULT A
018-42,16, 6 MATRIX 6

019- 43 32 RTN
020-42,21, 1 LBL 1
021- 44 25 STO I
022-45,23,25 RCL DIM I
023-45,23,13 RCL DIM C

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=314
https://www.hpmuseum.org/forum/private.php?action=send&uid=314
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=314
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176408
javascript:Thread.reportPost(176408);
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/thread-20271-post-176461.html#pid176461
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/post-176408.html#pid176408
https://www.hpmuseum.org/forum/thread-20355.html
https://www.hpmuseum.org/forum/thread-20355.html
https://www.hpmuseum.org/forum/thread-20355.html
https://www.hpmuseum.org/forum/thread-20355.html

024- 33 Rv
025- 30 -
026-42,23,11 DIM A

027-42,16, 1 MATRIX 1
028-42,21, 2 LBL 2
029- 45 0 RCL 0
030- 45 1 RCL 1
031- 43 36 LASTX

032- 40 +
033-45,43,24 RCL g (i)
034u 44 11 uSTO A
035- 22 2 GTO 2
036-45,23,25 RCL DIM I
037- 45 25 RCL I

038-42,16, 4 MATRIX 4
039- 43 36 LASTX
040- 43 33 R^
041-42,23,25 DIM I
042- 45 25 RCL I

043-42,16, 4 MATRIX 4
044- 43 32 RTN

An example is worth more than 1000 words:

Solve M*X=G, same as Valentin's Toy example, and the right hand side is the first two columns of the identity matrix,
so the result is the first two columns of the inverse, for easy comparison:

 3 1 4 1 | 5 1 0
 9 2 6 5 | 3 0 1
 M = 5 8 9 7 | 9 G = 0 0

 3 2 3 8 | 4 0 0
 --------+-- ---
 6 2 6 4 | 3 0 0

So enter

 3 1 4 1
 A 4x4 = 9 2 6 5
 5 8 9 7
 3 2 3 8

 5 1 0
 B 4x3 = 3 0 1
 9 0 0
 4 0 0

 C 1x4 = 6 2 6 4

 D 1x3 = 3 0 0

GSB B

then

 0.0265 0.3591
 A = -0.2101 0.2124

 -0.0408 -0.4286
 -0.0794 -0.0772

 C = 0.2747 0.1004

and the solution is then

 0.0265 0.3591
 -0.2101 0.2124
 X = -0.0408 -0.4286
 -0.0794 -0.0772

 0.2747 0.1004

13x13 example
You will need all the memory here, and be in 15C-2 mode.
Do
1 DIM (i) - only registers I,0,1
MATRIX 0 - set all matrix dimensions to 0

Then enter

 2 6 1 3 5 1 6 5 5 4 7 6 0 | 1

 0 4 0 4 9 4 2 2 3 8 4 2 6 | 0
 3 8 9 2 1 7 4 9 1 6 4 4 5 | 0
 A 8x8 = 6 8 0 2 7 9 0 4 B 8x6 = 2 3 1 5 0 | 0
 4 5 4 8 5 5 9 5 1 1 8 0 5 | 0
 6 4 7 1 5 8 5 4 0 5 0 2 4 | 0

 5 7 7 3 0 5 6 8 3 7 9 3 9 | 0
 0 9 3 4 2 0 3 4 4 2 9 9 5 | 0

 6 2 3 1 5 2 2 6 0 4 0 1 2 | 0
 5 2 7 5 0 2 0 3 9 5 3 5 4 | 0
 C 5x8 = 3 8 7 2 4 2 6 4 D 5x6 = 4 5 5 2 5 | 0

 2 4 4 5 5 4 6 3 9 0 9 5 8 | 0
 0 4 0 3 2 4 5 5 7 3 1 7 8 | 0

(no, I did not enter these manually.
The program used to fill the 13x13 in order ABCD:
first, define B as 8x5 and D as 5x5, that leaves room for the program.

start with 0 STO I, then
 RCL MATRIX A GSB A
 RCL MATRIX B GSB A
 RCL MATRIX C GSB A
 RCL MATRIX D GSB A

(I did not use the built-in RAN# to be able to reproduce these on other calculators)

045 LBL A
046 X<> I
047 MATRIX 1
048 ENTER
049 LBL 3
050 CLX
051 9821
055 x
056 .211327
063 +
064 FRAC
065 E3
067 %
068 INT
069uSTO (i) @ enter in USER mode!
070 GTO 3
071 +
072 FRAC
073 X<> I
074 RTN

Now remove the program lines 45-74, and enlarge B and D by 1 empty column:
 RCL MATRIX B
 MATRIX 4
 6
 ENTER
 8
 DIM B
 RCL MATRIX B
 MATRIX 4

 RCL MATRIX D
 MATRIX 4
 6
 ENTER
 5
 DIM D
 RCL MATRIX D
 MATRIX 4

 Store 1 in the 1,6 element of B:
 1
 ENTER
 ENTER
 6

27th August, 2023, 00:39 Post: #12

 STO g B

 run GSB B, the program takes about a second to produce the results:

 A
 -2.028655-02
 -6.059036-02
 -1.902323-02

 -4.112729-02
 -6.215680-03
 1.821154-02
 8.209561-02
 1.687675-02
 C

 2.943207-02
 6.494316-02
 4.809902-02
 3.980061-02
 -1.146363-01

Hope you like it.
Comments, improvements, criticism, all welcome!

Cheers, Werner

Valentin Albillo
Senior Member

Posts: 999
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Hi, all,

It seems this thread has run its course, without attracting much attention to be honest but that's life. Thanks for your interest
and comments, Fernando del Rey, ctrclckws, EdS2, Werner (who managed to shorten my inversion code by two steps and
further posted a related routine to solve large systems,) J-F Garnier, Namir and last-but-not-least, newcomer Bert, who
registered just to let me know of a one-character but significant typo, much appreciated.

Now it's time to provide some closure and so I'm posting this Epilogue of sorts which includes a short 42-step timing-helper
program which can be used to obtain arbitrarily accurate timings for both my matrix inverse and determinant routines for large
N, namely 9 ≤ N ≤ 16, depending on the particular device's available memory.

Here you'll find the commented Program Listing, the Usage Instructions, the Timings I've obtained using it on my HP-
15C CE/192, as well as ancillary sections for Things To Do and Miscellanea.

The program runs on the CE/192 for 9 ≤ N ≤ 12 (the CE/96 lacks the necessary memory) as well as any other devices physical
or virtual which have enough memory. The DM15 with firmware M1B might be able to also do N=13, but no current device has
enough memory to do 14 ≤ N ≤ 16 though both this timing program and the routines themselves would work unchanged.

Program listing:

 001 LBL A 018 RCL MATRIX A 035 LBL 0
 002 CF 8 019 GSB 0 036 STO I
 003 1 020 RCL MATRIX B 037 MATRIX 1
 004 DIM (i) 021 GSB 0 038 LBL 1
 005 X<>Y 022 RCL MATRIX C 039 RAN#

 006 MATRIX 0 023 GSB 0 040u STO (i) (*)
 007 8 024 RCL MATRIX D 041 GTO 1
 008 - 025 GSB 0 042 RTN
 009 8 026 2 043 LBL E 043 LBL D
 010 DIM C 027 0 or
 011 X<>Y 028 R/S 071 RTN 057 RTN
 012 DIM B 029 STO I
 013 ENTER 030 LBL 2
 014 DIM D 031 GSB E or GSB D
 015 8 032 DSE I
 016 ENTER 033 GTO 2

 017 DIM A 034 RTN

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176461
javascript:Thread.reportPost(176461);
https://www.hpmuseum.org/forum/thread-20271-post-176219.html#pid176219
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php

 (*) Step 040u STO (i) must be entered in USER mode.

Notes:

Steps 001-017 initialize the program (disable the complex stack, allocate all pool registers for matrices, reset all
matrices to 0x0) and dimension all 4 blocks A, B, C, D to their respective sizes: 8x8, 8x(N-8), (N-8)x8 and (N-
8)x(N-8).

Steps 018-028 fill up all 4 blocks with random values, then stop with the default number of loops (20) in the
display, ready for the user to start the loops and the timing.

Steps 029-034 perform the specified number of loops, calling the partitioned matrix inversion routine (LBL E) or
the determinant routine (LBL D) that many times, then execution ends.

Steps 035-042 implement a subroutine that fills up with random values the matrix whose descriptor is passed to
it in the X stack register.

Steps 043-071 or 043-057 implement my partitioned matrix inversion routine (LBL E) or my determinant
routine (LBL D), respectively, whose listings can be found in the first post of this thread.

Usage Instructions:

Note: This step is not necessary, but if you want to check that the program has been correctly entered and works as intended, do this:

 1, STO RAN#, 9, GSB A -> 20

and if now you recall the contents of the first element of matrices A and D you should get (in FIX 4):

 A1,1 = 0.2018, D1,1 = 0.1746

This program works strictly for NxN matrices with 9 ≤ N ≤ 16 (subject to available memory; N ≤ 12 for the CE/192). Inputting
N outside this range will generate an error. To time the inversion/determinant of an NxN matrix, do as follows:

First, run the program to dimension and quickly fill up all NxN elements with random values, then it stops with the
default number of loops (20) in the display:

 FIX 4, N, GSB A -> 20

The user can either accept this default (20 loops i.e. 20 NxN matrix inversions or determinants will be computed) or else
key in another number of loops, say 50 or whatever. The more loops, the more time it takes to perform them all but the
greater the timing accuracy. Assuming the user can get the final time accurate to the nearest second, the timing
accuracy will be 1/#loops i.e. 1/20 = 0.05" for the default.

Now the user must simultaneously press R/S and start the timing, closely watching for the program to end and taking
note of the final time.

 R/S -> E 1 8 (say, depends on N) for the inversion or some numeric value for the determinant.

and dividing the final time by the number of loops will give the time per NxN operation accurate to 1/#loops.

Timings:

These are the times I obtain on my CE/192 when using the above program with new, fresh lithium batteries (yours may vary
slightly.) Note that I use the default 20 loops to time the inversion routine but change it to 50 loops when timing the
determinant routine, as it is about 3x faster:

 Inverse Determinant
 Dim Block A Block D 20 loops time 50 loops time

 9x9 8x8 1x1 18" 0.90" 17" 0.34"
 10x10 8x8 2x2 24" 1.20" 22" 0.44"
 11x11 8x8 3x3 31" 1.55" 29" 0.58"
 12x12 8x8 4x4 40" 2.00" 37" 0.74"

Thus, when using my matrix inversion routine, inverting a 9x9 matrix takes my HP-15C CE less than one second, and
inverting a sizable 12x12 matrix takes about two seconds flat.

As for the determinant routine, it can compute the determinant of a 9x9 matrix in 1/3 of a second and that of a 12x12 matrix
in less than 3/4 of a second. Thus, it can compute three 9x9 determinants per second. That's fast !

Things To Do:

For those interested, there's a number of further things to do if you feel like it, e.g.:

https://www.hpmuseum.org/forum/thread-20271.html

30th August, 2023, 18:53 (This post was last modified: 30th August, 2023 21:28 by J-F Garnier.) Post: #13

(5th August, 2023 22:24)

1. In my OP I provided routines for matrix inversion and determinant computations but, as Fernando del Rey pointed out,
I (purposefully) didn't provide one for system solving, which would complete the "matrix trilogy" and might be quite
useful for large systems.

I may eventually post mine here but in the meantime Werner has recently posted a 212-step, 238-byte system solving
program which doesn't use or rely on my code, and just a few days ago posted another version but this time in the spirit
of my routines, i.e. dealing with suitably partitioned matrices, which is thus 5x shorter and 10x faster than his previous
standard attempt. This further proves that when solving large systems in the memory-expanded HP-15C partitioning is
the way, which was the whole point of this SRC#15 !

Be as it may, there are other ways to try and solve systems and as I said above, I may eventually post one or two
different attempts, not doing it right now because documenting and formatting those routines per my standards does
take a lot of time. Meanwhile, other people's routines are most welcome.

2. My routine for matrix inversion takes a 4-block partitioned NxN matrix as input and does the inversion in place, so the
matrix inverse is also in the same form and can be manually output by the user or utilized by some other program as-is.
However, it might be useful to write two supporting, complementary routines:

a. to convert a non-partioned NxN matrix to a 4-block partitioned matrix, as needed by the matrix inverse and
determinant routines.

b. to convert the partitioned NxN matrix inverse to a single non-partitioned NxN matrix. This might simplify further
operations with the matrix inverse and would also free 3 matrix descriptors for other purposes.

3. Call my inversion routine from one program of yours to perform, say, Nth-degree Polynomial Fit or Nth-degree Least-

Squares Polynomial Regression or Multivariate Linear Regression, or any other tasks which would benefit from using an
NxN matrix inverse or determinant for 9 ≤ N ≤ 12 (subject to available memory.)

Miscellanea:

Once R/S is pressed to start the timing of the matrix inversion routine, my CE immediately displays one or two running
messages in very quick succession, then the display remains blank for the whole duration of the loops. This seems very
similar to what happens with the dreaded LE's PSE (Pause) bug (except there's no PSE instruction whatsoever in my
program/routines,) so perhaps the cause is somehow related.

On the other hand, if timing the determinant routine, upon pressing R/S a single running message is immediately
displayed once and it stands still, never blinking or blanking till the timing process ends. All in all, I find the display of
the running message to be quite haphazard, sort of yet "unfinished business".

While checking this timing-helper program, it accidentally tried to invert a 9x9 matrix using the buil-in 1/x function
(which can't reliably work for matrices larger than 8x8,) and it immediately halted with an Error message and a blinking
display. All my bad, the code I wrote to compute the blocks' dimensions was faulty. Fortunately nothing got corrupted
AFAICT.

Regards.
V.

J-F Garnier
Senior Member

Posts: 845
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Application to Complex Matrices

The HP-15C is using partitioned matrices to represent a complex matrix for the inversion operation:
 | X -Y |
 | Y X |

where X and Y are submatrices holding the real and imaginary parts, respectively (see the 15c Owner's Handbook, p.164 for
instance).
The built-in matrix inversion capability of the HP-15C is limited to the 4x4 complex case, since it is using a 8x8 real matrix.

Fortunately the method described by Valentin can also be used to compute the inverse of complex partitioned matrices, thanks
to its flexible design:

Valentin Albillo Wrote:

Also, this subroutine can work with a partition into blocks of other sizes (say a 10x10 matrix partitioned in four blocks of size
5x5) as long as they and the corresponding auxiliary matrix E fit in available memory.

With it, we can now tackle the cases of complex 5x5 and 6x6 matrices on a memory-extended HP-15C.
All we have to do is to set the blocks in line with the complex partitioning scheme, i.e.:

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=176219
https://www.hpmuseum.org/forum/editpost.php?pid=176219
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176219
javascript:Thread.reportPost(176219);
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/thread-20271-post-176746.html#pid176746
https://www.hpmuseum.org/forum/thread-20271.html
https://www.hpmuseum.org/forum/thread-20355.html
https://www.hpmuseum.org/forum/thread-20271-post-176461.html#pid176461
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/user-13.html
https://literature.hpcalc.org/items/2258
https://www.hpmuseum.org/forum/post-175560.html#pid175560

 Complex ---------- Real blocks ----------
 M A B C D E Regs +Prog

 5x5 5x5 5x5 5x5 5x5 5x5 125 130
 6x6 6x6 6x6 6x6 6x6 6x6 180 185

and fill them with A=X, B=-Y, C=Y, D=X.

Example of inverting a 5x5 complex matrix :

Invert the following 5x5 complex matrix M:

 │ (5,3) (4,7) (8,0) (1,2) (6,6) │

 │ (7,2) (0,5) (3,4) (8,1) (1,0) │
 M = │ (8,4) (2,5) (6,7) (3,8) (5,0) │
 │ (6,1) (4,2) (3,7) (4,2) (6,5) │
 │ (3,7) (0,1) (8,7) (1,3) (2,4) │

- Initialize and dimension the blocks: A, B, C and D to 5x5:

 1, DIM (i), MATRIX 0
 5, ENTER, DIM A
 DIM B

 DIM C
 DIM D
 USER, MATRIX 1

- Store the real parts of the elements into block A:

 5 STO A, 4 STO A, 8 STO A, 1 STO A, 6 STO A,
 7 STO A, 0 STO A, 3 STO A, 8 STO A, 1 STO A,
 8 STO A, 2 STO A, 6 STO A, 3 STO A, 5 STO A,
 6 STO A, 4 STO A, 3 STO A, 4 STO A, 6 STO A,
 3 STO A, 0 STO A, 8 STO A, 1 STO A, 2 STO A

- Store the imaginary parts into block C:

 3 STO C, 7 STO C, 0 STO C, 2 STO C, 6 STO C,
 2 STO C, 5 STO C, 4 STO C, 1 STO C, 0 STO C,

 4 STO C, 5 STO C, 7 STO C, 8 STO C, 0 STO C,
 1 STO C, 2 STO C, 7 STO C, 2 STO C, 5 STO C,
 7 STO C, 1 STO C, 7 STO C, 3 STO C, 4 STO C

- Copy the matrix A to D, copy the matrix C to B and change the sign of the matrix B elements:

 RCL MATRIX A
 STO MATRIX D
 RCL MATRIX C
 STO MATRIX B
 RCL MATRIX B

 CHS

- Compute the inverse matrix:

 GSB E

- Recall the inverse matrix elements from blocks A and C:

Real parts:
 RCL A:-0.1197, RCL A:-0.0070, RCL A: 0.0635, RCL A: 0.0322, RCL A: 0.0285,
 RCL A: 0.0247, RCL A:-0.0206, RCL A: 0.0232, RCL A:-0.0363, RCL A: 0.0638,

 RCL A: 0.0277, RCL A:-0.0416, RCL A: 0.0183, RCL A:-0.0348, RCL A: 0.0439,
 RCL A: 0.0397, RCL A: 0.0886, RCL A:-0.0975, RCL A: 0.0319, RCL A:-0.0036,
 RCL A: 0.0587, RCL A: 0.0388, RCL A:-0.0482, RCL A: 0.0509, RCL A:-0.0549

Imaginary parts:
 RCL C:-0.0115, RCL C:-0.1044, RCL C: 0.0663, RCL C: 0.0940, RCL C:-0.1395,
 RCL C:-0.1038, RCL C:-0.0652, RCL C:-0.0403, RCL C: 0.0796, RCL C: 0.0945,
 RCL C: 0.0430, RCL C: 0.0005, RCL C:-0.0459, RCL C:-0.0329, RCL C: 0.0005,
 RCL C:-0.0081, RCL C: 0.1066, RCL C:-0.0765, RCL C:-0.0271, RCL C: 0.0520,
 RCL C:-0.0181, RCL C: 0.0712, RCL C: 0.0676, RCL C:-0.1183, RCL C: 0.0114

and thus the 5x5 inverse matrix M' is:

1st September, 2023, 17:25 Post: #14

 │ (-0.1197,-0.0115) (-0.0070,-0.1044) (0.0635,0.0663) (0.0322,0.0940) (0.0285,-0.1395) │
 │ (0.0247,-0.1038) (-0.0206,-0.0652) (0.0232,-0.0403) (-0.0363,0.0796) (0.0638,0.0945) │
M' = │ (0.0277,0.0430) (-0.0416,0.0005) (0.0183,-0.0459) (-0.0348,-0.0329) (0.0439,0.0005) │
 │ (0.0397,-0.0081) (0.0886,0.1066) (-0.0975,-0.0765) (0.0319,-0.0271) (-0.0036,0.0520) │
 │ (0.0587,-0.0181) (0.0388,0.0712) (-0.0482,0.0676) (0.0509,-0.1183) (-0.0549,0.0114) │

J-F

Werner
Senior Member

Posts: 798
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

The following routines will solve a real system up to 11x11 (GSB B) or a complex system up to 6x6 (GSB C).

Subroutine B will of course be able to solve a 5x5 complex system the usual way, ie by
transforming it into a 10x10 real system, but a 12x12 real system takes too much space.
Making use of the special structure of a complex linear equation, however, it is possible to go up to a 6x6 using routine C.
Solving 12x12 and 13x13 real systems remains possible, with my previous routine (in this thread) that requires a special
setup.
In contrast, these new routines do all the partitioning and re-assembling for you.
Both routines solve A*C=B, so input MATRIX A and B, perform either GSB B or GSB C, and the result will be in MATRIX C.
Additionally, the complex routine expects the matrices to be in c-form, so with real and complex parts alternating:

a11r a11c a12r a12c ...
a21r a21c a22r a22c ...

with suffix -'r' being the real part and -'c' the complex part of a number. See the Owner's handbook pg 160 'Calculations with
Complex Matrices' for more information on the various formats of complex matrices and how to switch between them.
The result C will also be in that format.
The drawback of this ease of use is the size of 157 bytes - but you may leave off either routine B or C, depending on your
needs.

Overview:

routine B: 45 lines, 58 bytes
solves a real system A*C=B of order n>8
If A is nxn and B is nxm, it uses n*(2*n+m-8) registers, eg solving a single 11x11 system needs 11*15=165 registers

routine C: 46 lines, 59 bytes
solves a complex system A*C=B.
If A is nx2n and B is nx2m, it uses n*(4*n+3*m) registers eg a 6x6 system with 1 right hand side would need 6*27=162
registers

subroutines needed for both routines (35 lines, 40 bytes):

Subroutine 1
splits a matrix (in stack register X) in a top and bottom part; the row size of the top part is in stack register Y.
The matrix itself will be redimensioned to hold the top part only; the bottom part will be in MATRIX C.

Subroutine 2
joins MATRIX C (top) with the matrix in stack register X (bottom). The result will be in MATRIX C.

Subroutine 3
moves elements from the matrix in I to MATRIX C. Used by both subroutine 1 and 2.

6x6 complex example

A
(2,5) (6,5) (1,9) (3,5) (5,6) (1,4)
(6,7) (5,1) (0,5) (4,8) (0,5) (4,4)
(9,5) (4,7) (2,7) (2,3) (3,0) (8,5)
(9,6) (2,8) (1,0) (7,9) (4,3) (9,4)
(6,2) (8,0) (0,3) (2,4) (7,5) (9,4)
(0,7) (4,6) (4,0) (5,3) (4,8) (8,4)

f USER to turn USER mode ON
f MATRIX 0
6 ENTER 12 f DIM A
f MATRIX 1

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=13
https://www.hpmuseum.org/forum/private.php?action=send&uid=13
http://www.jeffcalc.hp41.eu/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=13
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176746
javascript:Thread.reportPost(176746);
https://www.hpmuseum.org/forum/thread-20271-post-176824.html#pid176824
https://www.hpmuseum.org/forum/user-192.html
https://www.hpmuseum.org/forum/user-192.html

2 STO A
5 STO A
6 STO A
5 STO A
...
8 STO A
4 STO A

6 ENTER 2 f DIM B
1 STO B

GSB C (or just 'C' in USER mode)

RCL C -7.3378-03
RCL C 2.4292-02
..

to get

C
(-7.3378-03, 2.4292-02)
(1.9606-02,-4.7971-02)
(3.3200-02,-3.5196-02)
(-6.0637-03,-4.2733-02)
(7.6352-02,-1.4428-02)
(-8.7514-02, 3.6901-02)

157 bytes, 126 lines:

@ solve A*C=B

@ 157 bytes
@ input A and B, result in C=inv(A)*B
@
@ complex solve A*C=B
@ all in c-form

@ up to order 6
@ matrix: A B C D E
001 LBL C @ -----------------------------------
002 RCL MATRIX A @ ABc XYc
003 Py,x

004 RCL DIM A
005 RCL MATRIX B @ A X
006 Py,x @ B Y
007 GSB 1 @
008 STO MATRIX E @ A X Y Y
009 RCL DIM A @ B

010 RCL MATRIX A
011 GSB 1
012 STO MATRIX D @ A X B B Y
013 MATRIX 4
014 CHS

015 RCL MATRIX B
016 MATRIX 4
017 GSB 2
018 MATRIX 4 @ A X -BX B Y
019 RCL MATRIX A

020 STO MATRIX B
021 RESULT C
022 /
023 STO MATRIX A @ CX A CX B Y
024 RCL DIM D
025 RCL MATRIX A

026 MATRIX 4
027 GSB 1
028 RCL MATRIX A
029 MATRIX 4 @ C A Xt B Y
030 RCL MATRIX D

031 RCL MATRIX C
032 MATRIX 4 @ X
033 RESULT E
034 MATRIX 6 @ Y-BX
035 RCL MATRIX D

036 RCL MATRIX A
037 RESULT B

038 MATRIX 6 @ A-BC
039 RESULT E
040 / @ Y/A

041 RESULT C
042 MATRIX 6 @ X-CY
043 RCL MATRIX E
044 GSB 2
045 Cy,x @ XYc

046 RTN

@ real solve A*C=B
@ matrix: A B C D E
047 LBL B @ -----------------------------------
048 8 @ AB X

049 RCL MATRIX B @ CD Y
050 GSB 1
051 STO MATRIX E @ AB X Y Y
052 8 @ CD
053 RCL MATRIX A

054 GSB 1
055 STO MATRIX D @ AB X CD CD Y
056 8
057 RCL MATRIX A
058 MATRIX 4

059 GSB 1
060 MATRIX 4
061 RCL MATRIX A
062 MATRIX 4 @ A X B CD Y
063 RESULT C
064 /

065 RCL MATRIX B
066 RCL MATRIX A
067 RESULT B @ -1 -1
068 / @ A .X A .B CD Y
069 RCL MATRIX C

070 STO MATRIX A @ B X B CD Y
071 8
072 RCL MATRIX D
073 MATRIX 4
074 GSB 1 @ t

075 MATRIX 4 @ B X D C Y
076 RCL MATRIX A @ prepare line 089 ;-)
077 RCL MATRIX D
078 MATRIX 4 @ C
079 RCL MATRIX B
080 RESULT E

081 MATRIX 6 @ Y-C.X
082 RCL MATRIX D
083 RCL MATRIX A
084 RESULT C
085 MATRIX 6 @ D-C.B

086 RESULT E
087 /
088 RESULT B
089 MATRIX 6 @ X-B.Y
090 STO MATRIX C

091 RCL MATRIX E

@ combine C=X and Z=Y to
@ C= | X |
@ | Y |
@ In: X: Z=Y

@ Z is any matrix but C
@ Out: C= | X |
@ | Y |
@

092 LBL 2
093 STO I
094 RCL DIM C
095 X<>Y
096 CHS

097 MATRIX 1
098 STO- 0

5th September, 2023, 13:19 Post: #15

(1st September, 2023 17:25)

099 X<>Y

100 LBL 0

101 RCL DIM I
102 X<>Y
103 R^
104 -
105 X<>Y

106 DIM C

@ core subroutine
@ copy I -> C

107 LBL 3

108 RCL 0
109 LASTX
110 +
111 RCL 1
112 RCL g (i)

113uSTO C @ enter in USER mode!
114 GTO 3
115 RCL MATRIX C
116 RTN

@ split Z=| X |
@ | Y |
@ In:
@ Y: rX (#rows of X)
@ X: matrix Z=XY
@ Z is anything but C

@ Out:
@ X: MAT C
@ Z=X and C=Y

117 LBL 1

118 STO I
119 MATRIX 1
120 GSB 0
121 RCL DIM I
122 LASTX

123 X<>Y
124 DIM I
125 RCL MATRIX C
126 RTN

Hope you like it,
Cheers, Werner

J-F Garnier
Senior Member

Posts: 845
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Werner Wrote:

The following routines will solve a real system up to 11x11 (GSB B) or a complex system up to 6x6 (GSB C).
...

Let's see how to solve a complex 6x6 system using Valentin's core code and a few glue commands:

Werner's 6x6 complex example is to solve M x X = B defined as:

│ (2,5) (6,5) (1,9) (3,5) (5,6) (1,4) │ │ │ │ (1,0) │
│ (6,7) (5,1) (0,5) (4,8) (0,5) (4,4) │ │ │ │ (0,0) │
│ (9,5) (4,7) (2,7) (2,3) (3,0) (8,5) │ │ │ │ (0,0) │
│ (9,6) (2,8) (1,0) (7,9) (4,3) (9,4) │ x │ X │ = │ (0,0) │
│ (6,2) (8,0) (0,3) (2,4) (7,5) (9,4) │ │ │ │ (0,0) │

│ (0,7) (4,6) (4,0) (5,3) (4,8) (8,4) │ │ │ │ (0,0) │

- Invert the 6x6 complex matrix M (see details above):

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=192
https://www.hpmuseum.org/forum/private.php?action=send&uid=192
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=192
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176824
javascript:Thread.reportPost(176824);
https://www.hpmuseum.org/forum/thread-20271-post-176918.html#pid176918
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/post-176824.html#pid176824
https://www.hpmuseum.org/forum/thread-20271-post-176746.html#pid176746
https://www.hpmuseum.org/forum/thread-20271-post-176746.html#pid176746

7th September, 2023, 21:15 Post: #16

(5th September, 2023 13:19)

Create the 6x6 A, B, C and D matrices,
fill the A and C blocks with respectively the real and imaginary parts of the elements of M,
set block B=-A and block D=C,
invert the partitioned matrix (A, B, C, D) with GSB E.
The inverted matrix M' is in A (real parts) and C (imaginary parts)

- Now, solve the system by doing X = M' x B :

Set the RHS vector as a 6x2 matrix B (HP "complex form"):
 6 ENTER 2 DIM B

initialize the B values with real parts in column 1 and imaginary parts in column 2:
 0 STO MATRIX B ; clear all elements
 MATRIX 1

 1 STO B ; set B(1,1)=1

compute A x B into E:
 RCL MATRIX A
 RCL MATRIX B
 RESULT E

 x

Then, initialize the B values with negated imaginary parts in column 1 and real parts in column 2:
 0 STO MATRIX B ; clear all elements
 MATRIX 1
 0 STO B, 1 STO B ; set B(1,2)=1 [user mode is ON]

add C x B to E:
 RCL MATRIX C
 RCL MATRIX B
 CHS
 MATRIX 6 ; this is doing MAT E = E - C x B

- The resulting complex vector is in "HP complex form" in E with the real parts in column 1 and imaginary parts in column 2,
that can be read sequentially with RCL E in user mode:

 (-7.3378-03, 2.4292-02)
 (1.9606-02,-4.7971-02)

 (3.3200-02,-3.5196-02)
 (-6.0637-03,-4.2733-02)
 (7.6352-02,-1.4428-02)
 (-8.7514-02, 3.6901-02)

- Now, what are we missing for a complete complex matrix handling?

I would like very much to have a way to compute the determinant of a complex matrix in partitioned form.
But I don't see any way to do it easily.

J-F

Valentin Albillo
Senior Member

Posts: 999
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Hi, Jean-François,

J-F Garnier Wrote:

Let's see how to solve a complex 6x6 system using Valentin's core code and a few glue commands: [...]

Really admirable, solving a 6x6 complex system of equations with such ease by using my matrix inversion routine plus a few
commands executed directly from the keyboard and above all, lots of ingenuity. Very well done, J-F, thanks for sharing.

Quote:

I would like very much to have a way to compute the determinant of a complex matrix in partitioned form. But I
don't see any way to do it easily.

Determinants are overrated . Other than being used to check whether a matrix is singular or to check the resultant of two
polynomials or to solve a system using Cramer's rule, I don't know of many practical uses let alone uses of determinants of
complex matrices, and the ones I've just mentioned are quite inefficient and best tackled using other means. Besides, usually

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=13
https://www.hpmuseum.org/forum/private.php?action=send&uid=13
http://www.jeffcalc.hp41.eu/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=13
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=176918
javascript:Thread.reportPost(176918);
https://www.hpmuseum.org/forum/thread-20271-post-177016.html#pid177016
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/post-176918.html#pid176918
https://en.wikipedia.org/wiki/Cramer%27s_rule
https://en.wikipedia.org/wiki/Cramer%27s_rule

16th September, 2023, 15:24 Post: #17

(7th September, 2023 21:15)

(5th September, 2023 13:19)

you just need to check if it's zero or not, or at most its absolute value (condition numbers, etc.)

That said, computing the absolute value (modulus) of the determinant of a complex matrix is fairly trivial using partitioned real
matrices, like this:

Let's have an NxN complex square matrix M = A + iB, where A, B are real square matrices holding the real/imaginary parts,
respectively, of its elements. If we then construct this familiar 4-block partitioned real matrix

 M' = | A -B |
 | B A |

then SQR(DET(M')) is the absolute value of DET(M). Let's see a numeric example taken from here:

We have
 | (1, 2) (2, 3) (3, 1) | DET(M) = (44, -6)
 M = | (-1, 2) (2, -1) (-1, -1) | ,
 | (0, 3) (-2, 0) (2, 2) | ABS((44,-6)) = 44.4072066223

Now
 | 1 2 3 | | 2 3 1 |
 M = A + iB, A = | -1 2 -1 | , B = | 2 -1 -1 |
 | 0 -2 2 | | 3 0 2 |

So
 | 1 2 3 | -2 -3 -1 |
 | -1 2 -1 | -2 1 1 | DET(M') = 1972
 M' = | A -B | = | 0 -2 2 | -3 0 -2 | ,
 | B A | | 2 3 1 | 1 2 3 | SQR(1972) = 44.4072066223
 | 2 -1 -1 | -1 2 -1 |

 | 3 0 2 | 0 -2 2 |

which perfectly agrees and it's trivial to code for the HP-15C. Not exactly what you wanted but it might be a start for
your ingenuity .

Best regards.
V.

J-F Garnier
Senior Member

Posts: 845
Joined: Dec 2013

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

Valentin Albillo Wrote:

J-F Garnier Wrote:

I would like very much to have a way to compute the determinant of a complex matrix in partitioned form. But I
don't see any way to do it easily.

[...] computing the absolute value (modulus) of the determinant of a complex matrix is fairly trivial using partitioned real
matrices [...].

Let's have an NxN complex square matrix M = A + iB, where A, B are real square matrices holding the real/imaginary parts,
respectively, of its elements. If we then construct this familiar 4-block partitioned real matrix

 M' = | A -B |
 | B A |

then SQR(DET(M')) is the absolute value of DET(M).

That's really interesting !
Actually, I had a idea in mind when I asked for a way to compute the determinant of a partitioned complex matrix.
The HP-71B Math ROM is internally using the same partitioned scheme to invert complex matrices or solve complex systems,
and for the same reason as the 15C, doesn't have a function to compute the determinant of complex matrices.
Clearly, the 71B algorithm originated from the 15C. The algorithm then changed with the 28C/S that directly computes a LU
decomposition of the complex matrix, and thus was able to compute the complex value of the determinant.

So it could have been a nice feature of the 71B Math ROM to return the absolute value of the determinant with the DETL
function, following a complex matrix inversion operation or system solving. It would have cost almost nothing (computing the
determinant from the LU decomposition is immediate), and may have been useful as you noted to estimate the condition
number.

Thanks Valentin for all !

J-F

https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=177016
https://www.hpmuseum.org/forum/editpost.php?pid=177016
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=177016
javascript:Thread.reportPost(177016);
https://www.hpmuseum.org/forum/thread-20271-post-177338.html#pid177338
https://albillo.hpcalc.org/programs/HP%20Program%20VA711%20-%20HP-71B%20Exact%20Integer%20Determinants%20and%20Permanents.pdf
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/user-13.html
https://www.hpmuseum.org/forum/post-177016.html#pid177016
https://www.hpmuseum.org/forum/post-176918.html#pid176918

Today, 22:19 Post: #18

(16th September, 2023 15:24)

Enter Keywords Search Thread

View a Printable Version

Send this Thread to a Friend

Subscribe to this thread

 English (American) Go

Valentin Albillo
Senior Member

Posts: 999
Joined: Feb 2015
Warning Level: 0%

RE: [VA] SRC #015 - HP-15C & clones: Big NxN Matrix Inverse & Determinant

.
Hi, J-F,

J-F Garnier Wrote:

That's really interesting ! [...] Thanks Valentin for all !

You're welcome, J-F, thanks to you for your continued appreciation and kind comments.

I've noticed that there's still some things pending in the "To do" list I mentioned for this thread, so I might post new things
here in the foreseeable future to cater for them if no one else does first (or even if they do !)

In the meantime I'm separately posting Part 2 of this thread in a few minutes, stay tuned !

Best regards.
V.

« Next Oldest | Next Newest »

User(s) browsing this thread: Valentin Albillo*

Contact Us | The Museum of HP Calculators | Return to Top | Return to Content | Lite (Archive) Mode | RSS
Syndication

Forum software: My BB, © 2002-2023 My BB Group.

https://www.hpmuseum.org/forum/member.php?action=emailuser&uid=13
https://www.hpmuseum.org/forum/private.php?action=send&uid=13
http://www.jeffcalc.hp41.eu/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=13
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=177338
javascript:Thread.reportPost(177338);
https://www.hpmuseum.org/forum/private.php?action=send&uid=2263
https://albillo.hpcalc.org/
https://www.hpmuseum.org/forum/search.php?action=finduser&uid=2263
https://www.hpmuseum.org/forum/editpost.php?pid=177570
https://www.hpmuseum.org/forum/editpost.php?pid=177570
https://www.hpmuseum.org/forum/newreply.php?tid=20271&replyto=177570
javascript:Thread.reportPost(177570);
https://www.hpmuseum.org/forum/newreply.php?tid=20271
https://www.hpmuseum.org/forum/printthread.php?tid=20271
https://www.hpmuseum.org/forum/sendthread.php?tid=20271
https://www.hpmuseum.org/forum/usercp2.php?action=addsubscription&tid=20271&my_post_key=cddb523d361addde83d65aa332ee80e0
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/forum/usercp.php
https://www.hpmuseum.org/forum/post-177338.html#pid177338
https://www.hpmuseum.org/forum/thread-20271-nextoldest.html
https://www.hpmuseum.org/forum/thread-20271-nextnewest.html
https://www.hpmuseum.org/forum/user-2263.html
https://www.hpmuseum.org/contact.htm
https://www.hpmuseum.org/
https://www.hpmuseum.org/forum/archive/index.php?thread-20271.html
https://www.hpmuseum.org/forum/misc.php?action=syndication
http://mybb.com/
http://mybb.com/

